Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
BMC Public Health ; 23(1): 2104, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884950

RESUMO

A good muscle quality index (MQI) may have an inverse relationship with psychosocial variables of depression, anxiety, and stress in adolescents. Unfortunately, little scientific evidence has related MQI to psychosocial variables in this population. Therefore, this research aimed to determine the relationship between the MQI and psychosocial variables of depression, anxiety, and stress in Chilean adolescents. In this quantitative correlational design study, sixty adolescents participated voluntarily (mean ± standard deviation [SD]: age 15.11 ± 1.78 years). Anthropometric parameters, prehensile strength, MQI, and psychosocial variables were evaluated. The results showed that adolescents with high levels of MQI presented lower levels of depression (7.50 ± 6.06 vs. 10.97 ± 5.94), anxiety (5.64 ± 4.81 vs. 9.66 ± 5.12), and stress (6.79 ± 5.09 vs. 10 ± 5.58), in addition to reported lower abdominal obesity (WtHR, 0.47 ± 0.07 vs. 0.52 ± 0.07) than those with low levels of MQI. The group with high levels of MQI reported a higher prevalence of nonanxiety (81.3%, p = 0.031) and a lower prevalence of abdominal obesity (55.8%, p = 0.023). Likewise, a significant inverse association was evidenced between MQI and depression (ß; -6.18, 95% CI; -10.11: -2.25, p = 0.003), anxiety (ß; -6.61, 95% CI; -9.83: -3.39, p < 0.001) and stress (ß; -4.90, 95% CI; -8.49: -1.32 p = 0.008). In conclusion, the results suggest that high levels of MQI are associated with a higher prevalence of nonanxiety in adolescents and a significant inverse association between MQI and levels of depression, anxiety, and stress.


Assuntos
Ansiedade , Obesidade Abdominal , Humanos , Adolescente , Chile/epidemiologia , Ansiedade/epidemiologia , Ansiedade/psicologia , Músculos , Depressão/epidemiologia , Depressão/psicologia , Prevalência
2.
Cell Mol Bioeng ; 16(4): 283-298, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37811002

RESUMO

Purpose: Noninvasive cell-type-specific manipulation of neural signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Magnetic nanotechnologies have emerged as non-invasive neuromodulation approaches with high spatiotemporal control. We recently developed a wireless force-induced neurostimulation platform utilizing micro-sized magnetic discs (MDs) and low-intensity alternating magnetic fields (AMFs). When targeted to the cell membrane, MDs AMFs-triggered mechanoactuation enhances specific cell membrane receptors resulting in cell depolarization. Although promising, it is critical to understand the role of mechanical forces in magnetomechanical neuromodulation and their transduction to molecular signals for its optimization and future translation. Methods: MDs are fabricated using top-down lithography techniques, functionalized with polymers and antibodies, and characterized for their physical properties. Primary cortical neurons co-cultured with MDs and transmembrane protein chemical inhibitors are subjected to 20 s pulses of weak AMFs (18 mT, 6 Hz). Calcium cell activity is recorded during AMFs stimulation. Results: Neuronal activity in primary rat cortical neurons is evoked by the AMFs-triggered actuation of targeted MDs. Ion channel chemical inhibition suggests that magnetomechanical neuromodulation results from MDs actuation on Piezo1 and TRPC1 mechanosensitive ion channels. The actuation mechanisms depend on MDs size, with cell membrane stretch and stress caused by the MDs torque being the most dominant. Conclusions: Magnetomechanical neuromodulation represents a tremendous potential since it fulfills the requirements of negligible heating (ΔT < 0.1 °C) and weak AMFs (< 100 Hz), which are limiting factors in the development of therapies and the design of clinical equipment. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00786-8.

3.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571063

RESUMO

The Y509E mutant of ß-xylosidase from Geobacillus stearothermophilus (XynB2Y509E) (which also bears xylanase activity) has been immobilized in chitosan spheres through either entrapment or covalent bond formation methods. The maximum immobilization yield by entrapment was achieved by chitosan beads developed using a 2% chitosan solution after 1 h of maturation time in CFG buffer with ethanol. On the other hand, the highest value in covalent bond immobilization was observed when employing chitosan beads that were prepared from a 2% chitosan solution after 4 h of activation in 1% glutaraldehyde solution at pH 8. The activity expressed after immobilization by covalent bonding was 23% higher compared to the activity expressed following entrapment immobilization, with values of 122.3 and 99.4 IU.g-1, respectively. Kinetic data revealed that catalytic turnover values were decreased as compared to a free counterpart. Both biocatalysts showed increased thermal and pH stability, along with an improved storage capacity, as they retained 88% and 40% of their activity after being stored at 4 °C for two months. Moreover, XynB2Y509E immobilized by covalent binding also exhibited outstanding reusability, retaining 92% of activity after 10 cycles of reuse. In conclusion, our results suggest that the covalent bond method appears to be the best choice for XynB2Y509E immobilization.

4.
Small ; 19(48): e2304326, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537708

RESUMO

Polyamine-based vectors offer many advantages for gene therapy, but they are hampered by a limited knowledge on their biological fate and efficacy for nucleic acid delivery. The 18 F radiolabeled siRNA is complexed with poly(allyl amine) hydrochloride (PAH), PEGylated PAH (PAHPEG ), or oleic acid-modified PAH (PAHOleic ) to form polyplexes, and injected them intravenously into healthy rodents. The biodistribution patterns obtained by positron emission tomography (PET) imaging vary according to the polymer used for complexation. Free siRNA is quickly eliminated through the bladder. PAH and oleic acid modify PAH polyplexes accumulate in the lungs and liver. No elimination through the bladder is observed for PAH and PAHOleic within 2 h after administration. PAHPEG polyplexes accumulate in kidneys and are eliminated through the bladder. Polyplexes prepared with 18 F-labeled oleic acid-modified PAH and non-labeled siRNA show similar biodistribution to those prepared with labeled siRNA, but with more accumulation in the lungs due to the presence of non-complexed polymer. Intravenous administration of PAHOleic polyplexes in tumor models results in a limited availability of siRNA. When PAHOleic polyplexes are administered intratumorally in tumor bearing rodents, ≈40% of the radioactivity is retained in the tumor after 180 min while free siRNA is completely eliminated.


Assuntos
Neoplasias , Ácido Oleico , Humanos , RNA Interferente Pequeno , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Polímeros , Poliaminas
5.
ACS Appl Nano Mater ; 6(7): 6299-6311, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37274933

RESUMO

Gene editing has emerged as a therapeutic approach to manipulate the genome for killing cancer cells, protecting healthy tissues, and improving immune response to a tumor. The gene editing tool achaete-scute family bHLH transcription factor 1 CRISPR guide RNA (ASCL1-gRNA) is known to restore neuronal lineage potential, promote terminal differentiation, and attenuate tumorigenicity in glioblastoma tumors. Here, we fabricated a polymeric nonviral carrier to encapsulate ASCL1-gRNA by electrostatic interactions and deliver it into glioblastoma cells across a 3D in vitro model of the blood-brain barrier (BBB). To mimic rabies virus (RV) neurotropism, gene-loaded poly (ß-amino ester) nanoparticles are surface functionalized with a peptide derivative of rabies virus glycoprotein (RVG29). The capability of the obtained NPs, hereinafter referred to as RV-like NPs, to travel across the BBB, internalize into glioblastoma cells and deliver ASCL1-gRNA are investigated in a 3D BBB in vitro model through flow cytometry and CLSM microscopy. The formation of nicotinic acetylcholine receptors in the 3D BBB in vitro model is confirmed by immunochemistry. These receptors are known to bind to RVG29. Unlike Lipofectamine that primarily internalizes and transfects endothelial cells, RV-like NPs are capable to travel across the BBB, preferentially internalize glioblastoma cells and deliver ASCL1-gRNA at an efficiency of 10 % causing non-cytotoxic effects.

6.
ACS Appl Bio Mater ; 6(2): 529-542, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36647574

RESUMO

Small interference RNA (siRNA) is a tool for gene modulation, which can silence any gene involved in genetic disorders. The potential of this therapeutic tool is hampered by RNA instability in the blood stream and difficulties to reach the cytosol. Polyamine-based nanoparticles play an important role in gene delivery. Polyallylamine hydrochloride (PAH) is a polycation displaying primary amines that can be easily chemically modified to match the balance between cell viability and siRNA transfection. In this work, PAH has been covalently functionalized with oleic acid at different molar ratios by carbodiimide chemistry. The substituted polymers form polyplexes that keep positive surface charge and fully encapsulate siRNA. Oleic acid substitution improves cell viability in the pulmonary cell line A549. Moreover, 6 and 14% of oleic acid substitution show an improvement in siRNA transfection efficiency. CD47 is a ubiquitous protein which acts as "don't eat me signal." SIRPα protein of macrophages recognizes CD47, leading to tumor cell phagocytosis by macrophages. By knocking down CD47 with siRNA, cancer cells become vulnerable to be eliminated by the immune system. PAH-oleic acid substitutes show high efficacy in silencing the CD47 protein, making them a potential candidate for immunotherapy.


Assuntos
Antígeno CD47 , Ácido Oleico , RNA Interferente Pequeno , Antígeno CD47/genética , Antígeno CD47/metabolismo , RNA de Cadeia Dupla , Transfecção
7.
Adv Funct Mater ; 32(35)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36339020

RESUMO

Minimally invasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Here, we describe a wireless chemomagnetic neuromodulation platform for the on-demand control of primary striatal neurons that relies on nanoscale heating events. Iron oxide magnetic nanoparticles (MNPs) are functionally coated with thermoresponsive poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes loaded with dopamine. Dopamine loaded MNPs-POEGMA are co-cultured with primary striatal neurons. When alternating magnetinec fields (AMF) are applied, MNPs undergo hysteresis power loss and dissipate heat. The local heat produced by MNPs initiates a thermodynamic phase transition on POEGMA brushes resulting in polymer collapse and dopamine release. AMF-triggered dopamine release enhances the response of dopamine ion channels expressed on the cell membranes enhancing the activity of ~50% of striatal neurons subjected to the treatment. Chemomagnetic actuation on dopamine receptors is confirmed by blocking D1 and D2 receptors. The reversible thermodynamic phase transition of POEGMA brushes allow the on-demand release of dopamine in multiple microdoses. AMF-triggered dopamine release from MNPs-POEGMA causes no cell cytotoxicity nor promotes cell ROS production. This research represents a fundamental step forward for the chemomagnetic control of neural activity using hybrid magnetic nanomaterials with tailored physical properties.

8.
Adv Drug Deliv Rev ; 190: 114554, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181993

RESUMO

Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.


Assuntos
Sistemas de Liberação de Medicamentos , Luz , Humanos , Fototerapia , Medicina Regenerativa
9.
Mar Pollut Bull ; 181: 113838, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728297

RESUMO

Sandy beaches are part of an integral social-ecological system whose management has to encompass the natural and societal features of the catchment and the adjacent marine area, as well as the beach itself. Using a multi-use and complex beach system in Uruguay, the La Coronilla and Barra del Chuy resort, we interrogate those natural and societal features by employing the DAPSI(W)R(M) cause-consequence-response cycle and pathways. This identifies the Drivers, Activities, Pressures, State change on the natural system, Impacts (on the Welfare of the human system), and the Responses (requiring management Measures). We contend that this approach is needed for the sustainable development and use of this ecosystem and its biodiversity protection. This also indicates the importance of a holistic and systems approach, which is necessary, valid and valuable for sandy beaches worldwide.


Assuntos
Praias , Ecossistema , Biodiversidade , Humanos , Uruguai
10.
Neural Dev ; 17(1): 5, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35422013

RESUMO

BACKGROUND: The Xenopus retinotectal circuit is organized topographically, where the dorsal-ventral axis of the retina maps respectively on to the ventral-dorsal axis of the tectum; axons from the nasal-temporal axis of the retina project respectively to the caudal-rostral axis of the tectum. Studies throughout the last two decades have shown that mechanisms involving molecular recognition of proper termination domains are at work guiding topographic organization. Such studies have shown that graded distribution of molecular cues is important for topographic mapping. However, the complement of molecular cues organizing topography along the developing optic nerve, and as retinal axons cross the chiasm and navigate towards and innervate their target in the tectum, remains unknown. Down syndrome cell adhesion molecule (DSCAM) has been characterized as a key molecule in axon guidance, making it a strong candidate involved in the topographic organization of retinal fibers along the optic path and at their target. METHODS: Using a combination of whole-brain clearing and immunohistochemistry staining techniques we characterized DSCAM expression and the projection of ventral and dorsal retinal fibers starting from the eye, following to the optic nerve and chiasm, and into the terminal target in the optic tectum in Xenopus laevis tadpoles. We then assessed the effects of DSCAM on the establishment of retinotopic maps through spatially and temporally targeted DSCAM knockdown on retinal ganglion cells (RGCs) with axons innervating the optic tectum. RESULTS: Highest expression of DSCAM was localized to the ventral posterior region of the optic nerve and chiasm; this expression pattern coincides with ventral fibers derived from ventral RGCs. Targeted downregulation of DSCAM expression on ventral RGCs affected the segregation of medial axon fibers from their dorsal counterparts within the tectal neuropil, indicating that DSCAM plays a role in retinotopic organization. CONCLUSION: These findings together with previous studies demonstrating cell-autonomous roles for DSCAM during the development of pre- and postsynaptic arbors in the Xenopus retinotectal circuit indicates that DSCAM exerts multiple roles in coordinating axon targeting and structural connectivity in the developing vertebrate visual system.


Assuntos
Colículos Superiores , Vias Visuais , Animais , Axônios/fisiologia , Moléculas de Adesão Celular/metabolismo , Retina , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
11.
School Ment Health ; 14(1): 125-135, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35273652

RESUMO

Suicidal thoughts and behaviors are highly prevalent among adolescents, and peers are often the first, and sometimes only, people to know about youth suicidality. Since many adolescents do not directly disclose suicidal thoughts, school-based suicide prevention programs aim to train youth to recognize warning signs of suicide in their peers that serve as "cues" to refer at-risk peers to an appropriate adult. However, peer-presented cues vary widely in presentation, and adolescents are more likely to recognize overt (i.e., obvious or explicit) as opposed to covert (i.e., hidden or implied) cues. The type of cue exhibited may, in turn, affect whether adolescents make a referral to an adult. The current study examined whether training suicide prevention influences referral intentions for overt and covert suicide cues. Participants included 244 high school students (54% female; M age = 16.21) in the Southeastern United States who received suicide prevention training (SOS; Signs of Suicide) as part of their health curriculum. Prior to training, students endorsed higher referral intentions for peers exhibiting overt compared to covert cues. Training was associated with increased intentions to refer peers across cue type, but referral intentions for covert cues improved significantly from pre to post-training while those for overt cues remained high and stable. Findings suggest that suicide prevention training might differentially improve students' ability to detect and respond appropriately to less obvious indicators of suicide risk. These findings may inform the adaptation and development of future, more nuanced school-based suicide prevention programming.

12.
Adv Healthc Mater ; 11(6): e2101826, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890130

RESUMO

Noninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force-induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low-intensity and low-frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top-down lithography techniques that allow for cost-effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence. MMDs are utilized as transducers of AMFs into mechanical forces. When MMDs are exposed to primary rat neuronal circuits, their magneto-mechanical actuation triggers the response of specific mechanosensitive ion channels expressed on the cell membranes activating ≈50% of hippocampal and ≈90% of cortical neurons subjected to the treatment. Mechanotransduction is confirmed by the inhibition of mechanosensitive transmembrane channels with Gd3+ . Mechanotransduction mediated by MMDs cause no cytotoxic effect to neuronal cultures. This technology fulfills the requirements of cell-type specificity and weak magnetic fields, two limiting factors in the development of noninvasive neuromodulation therapies and clinical equipment design. Moreover, high efficiency and long-lasting stimulations are successfully achieved. This research represents a fundamental step forward for magneto-mechanical control of neural activity using disc-shaped micromaterials with tailored magnetic properties.


Assuntos
Mecanotransdução Celular , Neurônios , Animais , Campos Magnéticos , Magnetismo , Fenômenos Mecânicos , Neurônios/fisiologia , Ratos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38111858

RESUMO

Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.

14.
Pharmaceutics ; 13(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073311

RESUMO

The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.

15.
Environ Pollut ; 286: 117308, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991734

RESUMO

Despite the global occurrence of microplastic contamination on sandy beaches, evidence of microplastic distribution within beaches remains contradictory. When conflicting evidence is used to inform sampling surveys, it increases uncertainty in resulting data. Moreover, it hampers spatially explicit risk characterization of microplastic pollution to intertidal fauna. We aimed to guide sampling designs for microplastic monitoring on beaches, and to quantify macroinfauna exposure to microplastics. Microplastic abundance, quantified between 5 mm-66 µm, lacked a significant zonation across the top sediment layer of sub-terrestrial, upper and lower midlittoral, and swash zones at two sites with varying anthropogenic influence on a microtidal dissipative beach in Uruguay. Microplastic abundance decreased exponentially with increasing grain size, as revealed by Bayesian Poisson regression, although the decrease was less steep compared to prior knowledge regarding sediment - plastic interactions obtained for large (millimeter-sized) industrial pellets. Significant differences in microplastic contamination between the two sites with varying anthropogenic influence likely related to their proximity to a freshwater canal. Corresponding field measurements of body burdens of fibers and irregular particles were significantly lower for the polychaete Euzonus (Thoracophelia) furcifera, despite its preference for finer sediments with higher microplastic loads, compared to the isopods Excirolana braziliensis and Excirolana armata. Results provide critical insights toward representative sampling of microplastics within beach sites. Specifically, we caution against sampling limited to the drift line, and instead recommend: 1) reporting beach morphodynamic characteristics; 2) using clearly defined, ecologically-informed zonation schemes; and 3) accounting for sediment grain size as a covariate to normalize among reported contamination levels. The results contribute valuable baseline data toward realistic exposure landscapes relative to the sediment grain size preferences of macroinfauna, needed to inform laboratory experiments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Teorema de Bayes , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
16.
ACS Appl Mater Interfaces ; 13(22): 25771-25782, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34030437

RESUMO

The suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall. Stabilization of the aortic ECM could enable the development of novel therapeutic options for preventing and reducing AAA progression. In the present work, we studied the biochemical and biomechanical interactions of pentagalloyl glucose (PGG) on mouse C2C12 myoblast cells. PGG is a naturally occurring ECM-stabilizing polyphenolic compound that has been studied in various applications, including vascular health, with promising results. With its known limitations of systemic administration, we also studied the administration of PGG when encapsulated within poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Treatment with collagenase and elastase enzymes was used to mimic a pathway of degenerative effects seen in the pathogenesis of human AAA. PGG and PLGA(PGG) NPs were added to enzyme-treated cells in either a suppressive or preventative scenario. Biomolecular interactions were analyzed through cell viability, cell adhesion, reactive oxygen species (ROS) production, and MMP-2 and MMP-9 secretion. Biomechanical properties were studied through atomic force microscopy and quartz crystal microbalance with dissipation. Our results suggest that PGG or PLGA(PGG) NPs caused minor to no cytotoxic effects on the C2C12 cells. Both PGG and PLGA(PGG) NPs showed reduction in ROS and MMP-2 secretion if administered after enzymatic ECM degradation. A quantitative comparison of Young's moduli showed a significant recovery in the elastic properties of the cells treated with PGG or PLGA(PGG) NPs after enzymatic ECM degradation. This work provides preliminary support for the use of a pharmacological therapy for AAA treatment.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Adesão Celular , Matriz Extracelular/química , Taninos Hidrolisáveis/administração & dosagem , Mioblastos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Poliésteres/química , Animais , Matriz Extracelular/efeitos dos fármacos , Taninos Hidrolisáveis/química , Técnicas In Vitro , Metaloproteinases da Matriz/metabolismo , Camundongos , Mioblastos/citologia , Nanopartículas/química
17.
Bioengineering (Basel) ; 8(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498466

RESUMO

The administration of gene-editing tools has been proposed as a promising therapeutic approach for correcting mutations that cause diseases. Gene-editing tools, composed of relatively large plasmid DNA constructs that often need to be co-delivered with a guiding protein, are unable to spontaneously penetrate mammalian cells. Although viral vectors facilitate DNA delivery, they are restricted by the size of the plasmid to carry. In this work, we describe a strategy for the stable encapsulation of the gene-editing tool piggyBac transposon into Poly (ß-amino ester) nanoparticles (NPs). We propose a non-covalent and a covalent strategy for stabilization of the nanoformulation to slow down release kinetics and enhance intracellular delivery. We found that the formulation prepared by covalently crosslinking Poly (ß-amino ester) NPs are capable to translocate into the cytoplasm and nuclei of human glioblastoma (U87MG) cells within 1 h of co-culturing, without the need of a targeting moiety. Once internalized, the nanoformulation dissociates, delivering the plasmid presumably as a response to the intracellular acidic pH. Transfection efficiency is confirmed by green fluorescence protein (GFP) expression in U87MG cells. Covalently stabilized Poly (ß-amino ester) NPs are able to transfect ~55% of cells causing non-cytotoxic effects. The strategy described in this work may serve for the efficient non-viral delivery of other gene-editing tools.

18.
Molecules ; 26(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467076

RESUMO

Cross-linked enzyme aggregates (CLEAs) of the Y509E mutant of glycoside hydrolase family 52 ß-xylosidase from Geobacillus stearothermophilus with dual activity of ß-xylosidase and xylanase (XynB2Y509E) were prepared. Ammonium sulfate was used as the precipitant agent, and glutaraldehyde as cross-linking agent. The optimum conditions were found to be 90% ammonium sulfate, 12.5 mM glutaraldehyde, 3 h of cross-linking reaction at 25 °C, and pH 8.5. Under these (most effective) conditions, XynB2Y509E-CLEAs retained 92.3% of their original ß-xylosidase activity. Biochemical characterization of both crude and immobilized enzymes demonstrated that the maximum pH and temperature after immobilization remained unchanged (pH 6.5 and 65 °C). Moreover, an improvement in pH stability and thermostability was also found after immobilization. Analysis of kinetic parameters shows that the K m value of XynB2Y509E-CLEAs obtained was slightly higher than that of free XynB2Y509E (1.2 versus 0.9 mM). Interestingly, the xylanase activity developed by the mutation was also conserved after the immobilization process.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/química , Geobacillus stearothermophilus/enzimologia , Glutaral/química , Glicosídeo Hidrolases/química , Agregados Proteicos , Proteínas de Bactérias/genética , Geobacillus stearothermophilus/genética , Glicosídeo Hidrolases/genética , Mutação de Sentido Incorreto
19.
Soft Matter ; 17(9): 2530-2538, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33508060

RESUMO

Heterogeneous non-linear poly(ethylene glycol) analogs, like poly(oligo(ethylene glycol)methyl ether methacrylate) (POEGMA), are of particular interest in the fabrication of smart biocompatible coatings as they undergo a reversible macromolecular rearrangement in response to external heat stimuli. The phase transition dynamics of POEGMA coatings in response to external temperature stimuli have been poorly investigated. The quartz crystal microbalance with dissipation (QCM-D) can be used to investigate the phase transition of these functional coatings as polymer brushes in a dynamic and noninvasive in situ measurement. POEGMA brushes with different thickness are synthesized from the surface of a QCM-D sensor following a living radical polymerization technique by varying the monomer molecular weight. Investigations on the thermoresponsive collapse and swelling of POEGMA brushes grafted from the surface of a QCM-D sensor reveal the reversible phase transition nature of these coatings. Furthermore, the potential of these smart coatings in the field of biotechnology was explored by investigating the absorption and desorption of a model drug. A pulsatile drug release profile triggered by an increase in temperature is observed from POEGMA brushes. POEGMA brushes have the potential to be utilized as polymer coatings for controlled and programable drug release.

20.
HGG Adv ; 2(4): 100050, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35047841

RESUMO

We investigated the ancestral origins of four Ecuadorian ethnic groups-Afro-Ecuadorian, Mestizo, Montubio, and the Indigenous Tsáchila-in an effort to gain insight on the relationship between ancestry, culture, and the formation of ethnic identities in Latin America. The observed patterns of genetic ancestry are largely concordant with ethnic identities and historical records of conquest and colonization in Ecuador. Nevertheless, a number of exceptional findings highlight the complex relationship between genetic ancestry and ethnicity in Ecuador. Afro-Ecuadorians show far less African ancestry, and the highest levels of Native American ancestry, seen for any Afro-descendant population in the Americas. Mestizos in Ecuador show high levels of Native American ancestry, with substantially less European ancestry, despite the relatively low Indigenous population in the country. The recently recognized Montubio ethnic group is highly admixed, with substantial contributions from all three continental ancestries. The Tsáchila show two distinct ancestry subgroups, with most individuals showing almost exclusively Native American ancestry and a smaller group showing a Mestizo characteristic pattern. Considered together with historical data and sociological studies, our results indicate the extent to which ancestry and culture interact, often in unexpected ways, to shape ethnic identity in Ecuador.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...